26 lines
1.3 KiB
Python
Raw Normal View History

import numpy as np
import quantcommon
#가치주 포트폴리오. PER, PBR이 낮은 회사 20개
def get_value_top(count):
qc = quantcommon.QuantCommon()
ticker_list = qc.get_ticker_list()
value_list = qc.get_value_list()
# 가치 지표가 0이하인 경우 nan으로 변경
value_list.loc[value_list[''] <= 0, ''] = np.nan
# 가치지표 테이블을 가로로 긴 형태로 변경
value_pivot = value_list.pivot(index='종목코드', columns='지표', values='')
# 티커 테이블과 가치 지표 테이블을 합침
data_bind = ticker_list[['종목코드', '종목명']].merge(value_pivot,
how='left',
on='종목코드')
# rank() 함수로 PER, PBR 열의 순위를 구함. axis=0을 입력하여 순위는 열 방향으로 구함.(PER, PBR 각각 순위)
value_rank = data_bind[['PER', 'PBR']].rank(axis = 0)
# axis=1을 통해서 위에서 구한 순위 랭크를 합침. 합친 것을 다시 rank()
value_sum = value_rank.sum(axis = 1, skipna = False).rank()
return data_bind.loc[value_sum <= count, ['종목코드', '종목명', 'PER', 'PBR']]
if __name__ == '__main__':
print(get_value_top(20))