feat: f-score 리팩토링

This commit is contained in:
Ayuriel 2025-03-16 18:23:24 +09:00
parent da6349dc35
commit 04d1557a9d

View File

@ -3,41 +3,24 @@ import pandas as pd
import quantcommon
# 흑자 기업이면 1점(당기순이익)
def calc_net_income(qc, ticker_list, base_date):
def calc_net_income(qc, base_date):
net_income_list = qc.get_fs_list_by_account_and_date("'당기순이익'", f"'{base_date}'")
net_income_list['score1'] = (net_income_list[''] > 0).astype(int)
# print(net_income_list)
result_df = net_income_list[['종목코드', 'score1']]
return net_income_list[['종목코드', 'score1']]
# 원본 데이터프레임에 score 병합
final_df = ticker_list[['종목코드', '종목명', '분류']].merge(result_df, on='종목코드', how='left')
# score 값이 NaN인 경우 기본값 0으로 채우기
final_df['score1'] = final_df['score1'].fillna(0).astype(int)
return final_df
# CFO(영업활동현금흐름) 흑자 기업이면 1점
def calc_cfo(qc, ticker_list, base_date):
def calc_cfo(qc, base_date):
cfo_list = qc.get_fs_list_by_account_and_date("'*영업에서창출된현금흐름'", f"'{base_date}'")
cfo_list['score2'] = (cfo_list[''] > 0).astype(int)
# print(cfo_list)
result_df = cfo_list[['종목코드', 'score2']]
# 원본 데이터프레임에 score 병합
final_df = ticker_list[['종목코드', '종목명', '분류', 'score1']].merge(result_df, on='종목코드', how='left')
# score 값이 NaN인 경우 기본값 0으로 채우기
final_df['score2'] = final_df['score2'].fillna(0).astype(int)
return final_df
return cfo_list[['종목코드', 'score2']]
# 신규 주식 발행(유상증사): 전년 없음인 경우 1점
# 제작년과 작년 자본금 변화가 없는 경우로 체크
def calc_capital(qc, ticker_list, base_date):
def calc_capital(qc, base_date):
last_year = datetime(base_date.year - 1, base_date.month, base_date.day).date()
capital_date = f"'{last_year}', '{base_date}'"
@ -52,38 +35,22 @@ def calc_capital(qc, ticker_list, base_date):
aggfunc='first'
)
pivot_df = pivot_df.dropna()
# print(pivot_df)
# 값 차이 계산 및 score 부여
pivot_df['diff'] = pivot_df[base_date] - pivot_df[last_year]
pivot_df['score3'] = (pivot_df['diff'] == 0).astype(int)
# 결과 정리
result_df = pivot_df.reset_index()[['종목코드', 'score3']]
return pivot_df.reset_index()[['종목코드', 'score3']]
# 원본 데이터프레임에 score 병합
final_df = ticker_list[['종목코드', '종목명', '분류', 'score1', 'score2']].merge(result_df, on='종목코드', how='left')
# score 값이 NaN인 경우 기본값 0으로 채우기
final_df['score3'] = final_df['score3'].fillna(0).astype(int)
# score_1_df = final_df[final_df['score'] == 1]
return final_df
def calc_gpa(qc, ticker_list, base_date):
def calc_gpa(qc, base_date):
fs_list = qc.get_fs_list_by_account_and_date("'매출총이익', '자산'", f"'{base_date}'")
fs_list_pivot = fs_list.pivot(index='종목코드', columns='계정', values='')
fs_list_pivot['GPA'] = fs_list_pivot['매출총이익'] / fs_list_pivot['자산']
# 결과 정리
result_df = fs_list_pivot.reset_index()[['종목코드', 'GPA']]
# 티커 테이블과 합침
final_df = ticker_list[['종목코드', '종목명', '분류', 'f-score']].merge(result_df,
how='left',
on='종목코드')
final_df['GPA'] = final_df['GPA'].fillna(-1).astype(float)
return final_df
return fs_list_pivot.reset_index()[['종목코드', 'GPA']]
def get_ticker_list(qc):
ticker_list = qc.get_ticker_list()
@ -92,20 +59,35 @@ def get_ticker_list(qc):
q=[0, 0.2, 0.8, 1.0], # 0-20%, 20-80%, 80-100% 구간
labels=['소형주', '중형주', '대형주'])
return ticker_list
return ticker_list[['종목코드', '종목명', '분류', '종가']]
def get_f_score(qc, base_date):
ticker_list = get_ticker_list(qc)
apply_net_income = calc_net_income(qc, ticker_list, base_date)
apply_cfo = calc_cfo(qc, apply_net_income, base_date)
apply_capital = calc_capital(qc, apply_cfo, base_date)
score1_list = calc_net_income(qc, base_date)
score2_list = calc_cfo(qc, base_date)
score3_list = calc_capital(qc, base_date)
gpa_list = calc_gpa(qc, base_date)
# score 1 병합 + NaN인 경우 기본값 0
merge_score1 = ticker_list.merge(score1_list, on='종목코드', how='left')
merge_score1['score1'] = merge_score1['score1'].fillna(0).astype(int)
# score 2 병합 + NaN인 경우 기본값 0
merge_score2 = merge_score1.merge(score2_list, on='종목코드', how='left')
merge_score2['score2'] = merge_score2['score2'].fillna(0).astype(int)
# score 3 병합 + NaN인 경우 기본값 0
merge_score3 = merge_score2.merge(score3_list, on='종목코드', how='left')
merge_score3['score3'] = merge_score3['score3'].fillna(0).astype(int)
# 개별 점수들로 신f-score 계산
apply_capital['f-score'] = apply_capital['score1'] + apply_capital['score2'] + apply_capital['score3']
merge_score3['f-score'] = merge_score3['score1'] + merge_score3['score2'] + merge_score3['score3']
apply_gpa = calc_gpa(qc, apply_capital, base_date)
# GPA 병합 + NaN인 경우 기본 값 -1(내림차순 정렬 시에 하위 순위를 받게 하려고)
final_df = merge_score3.merge(gpa_list, on='종목코드', how='left')
final_df['GPA'] = final_df['GPA'].fillna(-1).astype(float)
f_score3 = apply_gpa[apply_gpa['f-score'] == 3]
f_score3 = final_df[final_df['f-score'] == 3].round(4)
result = f_score3[f_score3['분류'] == '소형주'].sort_values('GPA', ascending=False)
# print(f_score3)