From 470b57b2c934ad2cba035fcc5f85620271679251 Mon Sep 17 00:00:00 2001 From: Ayuriel Date: Mon, 10 Mar 2025 18:27:43 +0900 Subject: [PATCH] =?UTF-8?q?feat:=20=EB=AA=A8=EB=A9=98=ED=85=80,=20k-ratio(?= =?UTF-8?q?=EB=AA=A8=EB=A9=98=ED=85=80=20=EC=A4=91=20=EA=BE=B8=EC=A4=80?= =?UTF-8?q?=ED=95=98=EA=B2=8C=20=EB=A7=8E=EC=9D=B4=20=EC=83=81=EC=8A=B9)?= =?UTF-8?q?=20=EA=B5=AC=ED=98=84?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- example/13-kor-momentum-portfolio.py | 1 + streamlit-quant/strategy/momentum.py | 87 ++++++++++++++++++++++++++++ 2 files changed, 88 insertions(+) create mode 100644 streamlit-quant/strategy/momentum.py diff --git a/example/13-kor-momentum-portfolio.py b/example/13-kor-momentum-portfolio.py index 8ee6a23..22cc264 100644 --- a/example/13-kor-momentum-portfolio.py +++ b/example/13-kor-momentum-portfolio.py @@ -5,6 +5,7 @@ import statsmodels.api as sm import numpy as np import quantcommon +# strategy/momentum에 구현 # 모멘텀 포트폴리오. 최근 12개월 수익률이 높은 주식 engine = quantcommon.QuantCommon().create_engine() diff --git a/streamlit-quant/strategy/momentum.py b/streamlit-quant/strategy/momentum.py new file mode 100644 index 0000000..3baa50b --- /dev/null +++ b/streamlit-quant/strategy/momentum.py @@ -0,0 +1,87 @@ +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns +import statsmodels.api as sm +import numpy as np +import quantcommon + + +def print_graph(values): + plt.rc('font', family='Malgun Gothic') + g = sns.relplot(data=values, + x='날짜', + y='종가', + col='종목코드', + col_wrap=5, + kind='line', + facet_kws={ + 'sharey': False, + 'sharex': True + }) + g.set(xticklabels=[]) + g.set(xlabel=None) + g.set(ylabel=None) + g.fig.set_figwidth(15) + g.fig.set_figheight(8) + plt.subplots_adjust(wspace=0.5, hspace=0.2) + plt.show() + +# strategy/momentum에 구현 +# 모멘텀 포트폴리오. 최근 12개월 수익률이 높은 주식 +def get_momentum_top(count): + ticker_list = quantcommon.QuantCommon().get_ticker_list() + price_list = quantcommon.QuantCommon().get_price_list(interval_month=12) + + price_pivot = price_list.pivot(index='날짜', columns='종목코드', values='종가') + + # 가격 테이블에서 (가장 끝 행 / 가장 첫 행)으로 각 종목의 12개월 수익률을 구함 + ret_list = pd.DataFrame(data=(price_pivot.iloc[-1] / price_pivot.iloc[0]) - 1, + columns=['return']) + data_bind = ticker_list[['종목코드', '종목명']].merge(ret_list, how='left', on='종목코드') + + # 12개월 수익률 열 순위를 구함. 지표가 높을 수록 좋으니 ascending=False + momentum_rank = data_bind['return'].rank(axis=0, ascending=False) + # 모멘텀만 가지고 순위 측정 + price_momentum = price_list[price_list['종목코드'].isin( + data_bind.loc[momentum_rank <= count, '종목코드'])] + # 해당 종목들(모멘텀 상위 count 개)의 가격 그래프 확인 + # print_graph(price_momentum) + + # k-ratio(모멘텀의 꾸준함 지표) + # pct_change() 함수로 각 종목의 수익률 계산하고 수익률이 곗나되지 않는 첫 번째 행은 제외 + ret = price_pivot.pct_change().iloc[1:] + # 로그 누적 수익률 계산 + ret_cum = np.log(1 + ret).cumsum() + + # x축은 기간 + x = np.array(range(len(ret))) + k_ratio = {} + + for i in range(0, len(ticker_list)): + + ticker = data_bind.loc[i, '종목코드'] + + try: + y = ret_cum.loc[:, price_pivot.columns == ticker] + reg = sm.OLS(y, x).fit() + res = float(reg.params / reg.bse) + except: + res = np.nan + + k_ratio[ticker] = res + + k_ratio_bind = pd.DataFrame.from_dict(k_ratio, orient='index').reset_index() + k_ratio_bind.columns = ['종목코드', 'K_ratio'] + + k_ratio_bind.head() + + data_bind = data_bind.merge(k_ratio_bind, how='left', on='종목코드') + k_ratio_rank = data_bind['K_ratio'].rank(axis=0, ascending=False) + momentum_top = data_bind[k_ratio_rank <= count] + + k_ratio_momentum = price_list[price_list['종목코드'].isin(data_bind.loc[k_ratio_rank <= count, '종목코드'])] + print_graph(k_ratio_momentum) + return momentum_top + +if __name__ == '__main__': + print(get_momentum_top(20)) \ No newline at end of file