feat: 슈퍼 퀄리티 전략 구현
All checks were successful
CI Build / build (push) Successful in 4s

This commit is contained in:
Ayuriel 2025-03-31 10:36:56 +09:00
parent 5bb2dbe699
commit c01ea3208a
5 changed files with 78 additions and 88 deletions

View File

@ -40,7 +40,7 @@ def process_for_price():
# 시작일과 종료일
# fr = (date.today() + relativedelta(years=-5)).strftime("%Y%m%d")
to = (date.today()).strftime("%Y%m%d")
fr = '20250125'
fr = '20250301'
# 오류 발생 시 이를 무시하고 다음 루프로 진행
try:

View File

@ -181,9 +181,9 @@ def get_multi_factor_top(qc, count):
# 열 이름 설정
data_bind_final.columns = ['quality', 'value', 'momentum']
plt.rc('font', family='Malgun Gothic')
plt.rc('axes', unicode_minus=False)
fig, axes = plt.subplots(3, 1, figsize=(10, 6), sharex=True, sharey=True)
# plt.rc('font', family='Malgun Gothic')
# plt.rc('axes', unicode_minus=False)
# fig, axes = plt.subplots(3, 1, figsize=(10, 6), sharex=True, sharey=True)
for n, ax in enumerate(axes.flatten()):
ax.hist(data_bind_final.iloc[:, n])
ax.set_title(data_bind_final.columns[n], size=12)

View File

@ -1,6 +1,4 @@
from datetime import datetime
from src import ui as st
from strategies.factors import f_score
from db.common import DBManager
@ -44,6 +42,14 @@ from db.common import DBManager
# 신F-스코어가 3점인 종목 중 GP/A가 높은 종목 위주로 매수했으면 (1) CAGR도 조금 개선되고 (2) 최상 30개 종목을 매수했을 경우 선택받은 종목 360개 중 파산한 기업은 단 1개였다.
# F-스코어와 GP/A는 엄청난 잠재력을 지닌 콤비네이션임이 분명하다.
# """)
def calc_gpa(db, base_date):
fs_list = db.get_fs_list_by_account_and_date("'매출총이익', '자산'", f"'{base_date}'")
fs_list_pivot = fs_list.pivot(index='종목코드', columns='계정', values='')
fs_list_pivot['GPA'] = fs_list_pivot['매출총이익'] / fs_list_pivot['자산']
# 결과 정리
return fs_list_pivot.reset_index()[['종목코드', 'GPA']]
def get_last_year_end():
# 현재 날짜 가져오기 (2025년 3월 16일 기준)
@ -57,11 +63,22 @@ def get_last_year_end():
return last_year_end.date()
st.write("투자 전략: 강환국 슈퍼 퀄리티 전략 2.0")
def get_super_quality_top(db):
date = get_last_year_end()
f_score_data = f_score.get_f_score(DBManager(), date)
date = get_last_year_end()
data = f_score.get_f_score(DBManager(), date)
gpa_list = calc_gpa(db, date)
config = {}
# GPA 병합 + NaN인 경우 기본 값 -1(내림차순 정렬 시에 하위 순위를 받게 하려고)
final_df = f_score_data.merge(gpa_list, on='종목코드', how='left')
final_df['GPA'] = final_df['GPA'].fillna(-1).astype(float)
st.dataframe(data, column_config=config, use_container_width=True)
f_score3 = final_df[final_df['f-score'] == 3].round(4)
result = f_score3[f_score3['분류'] == '소형주'].sort_values('GPA', ascending=False)
# print(f_score3)
# fs_list_copy = f_score3[['GPA']].copy()
# # print(fs_list_copy)
# fs_rank = fs_list_copy.rank(ascending=False, axis=0)
# # print(fs_rank)
# return f_score3.loc[fs_rank['GPA'] <= 20, ['종목코드', '종목명', '분류', 'f-score', 'GPA']].round(4)
return result

View File

@ -45,14 +45,6 @@ def calc_capital(qc, base_date):
return pivot_df.reset_index()[['종목코드', 'score3']]
def calc_gpa(qc, base_date):
fs_list = qc.get_fs_list_by_account_and_date("'매출총이익', '자산'", f"'{base_date}'")
fs_list_pivot = fs_list.pivot(index='종목코드', columns='계정', values='')
fs_list_pivot['GPA'] = fs_list_pivot['매출총이익'] / fs_list_pivot['자산']
# 결과 정리
return fs_list_pivot.reset_index()[['종목코드', 'GPA']]
def get_ticker_list(qc):
ticker_list = qc.get_ticker_list()
# 시가총액을 기준으로 정렬
@ -67,7 +59,6 @@ def get_f_score(qc, base_date):
score1_list = calc_net_income(qc, base_date)
score2_list = calc_cfo(qc, base_date)
score3_list = calc_capital(qc, base_date)
gpa_list = calc_gpa(qc, base_date)
# score 1 병합 + NaN인 경우 기본값 0
merge_score1 = ticker_list.merge(score1_list, on='종목코드', how='left')
@ -84,20 +75,7 @@ def get_f_score(qc, base_date):
# 개별 점수들로 신f-score 계산
merge_score3['f-score'] = merge_score3['score1'] + merge_score3['score2'] + merge_score3['score3']
# GPA 병합 + NaN인 경우 기본 값 -1(내림차순 정렬 시에 하위 순위를 받게 하려고)
final_df = merge_score3.merge(gpa_list, on='종목코드', how='left')
final_df['GPA'] = final_df['GPA'].fillna(-1).astype(float)
f_score3 = final_df[final_df['f-score'] == 3].round(4)
result = f_score3[f_score3['분류'] == '소형주'].sort_values('GPA', ascending=False)
# print(f_score3)
# fs_list_copy = f_score3[['GPA']].copy()
# # print(fs_list_copy)
# fs_rank = fs_list_copy.rank(ascending=False, axis=0)
# # print(fs_rank)
# return f_score3.loc[fs_rank['GPA'] <= 20, ['종목코드', '종목명', '분류', 'f-score', 'GPA']].round(4)
return result
return merge_score3
if __name__ == '__main__':
date = datetime(2024, 12, 31).date()

View File

@ -3,7 +3,7 @@ Super Quality strategy page for the Streamlit Quant application.
"""
import streamlit as st
from datetime import datetime
from strategies.factors.f_score import get_f_score
from strategies.composite.super_quality import get_super_quality_top
from db.common import DBManager
def render_quality_page():
@ -60,59 +60,54 @@ def render_quality_page():
st.write("## 슈퍼 퀄리티 전략 2.0 포트폴리오")
# Get data
date = get_last_year_end()
db = DBManager()
data = get_f_score(db, date)
# Display options
col1, col2 = st.columns([1, 2])
with col1:
st.write("### 설정")
min_f_score = st.slider("최소 F-스코어", min_value=0, max_value=3, value=3)
include_small_caps = st.checkbox("소형주만 포함", value=True)
num_stocks = st.slider("포트폴리오 종목수", min_value=5, max_value=50, value=20)
# Filter data
filtered_data = data[data['f-score'] >= min_f_score].copy()
if include_small_caps:
# Sort by market cap and keep only the bottom 20%
filtered_data = filtered_data.sort_values('시가총액')
filtered_data = filtered_data.head(int(len(filtered_data) * 0.2))
# Sort by GP/A in descending order
filtered_data = filtered_data.sort_values('GP/A', ascending=False)
# Get top N stocks
portfolio = filtered_data.head(num_stocks)
# Display portfolio
with col2:
st.write(f"### 선택된 {len(portfolio)} 종목")
st.dataframe(portfolio, use_container_width=True)
# Display metrics
st.write("### 포트폴리오 지표")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(label="평균 F-스코어", value=f"{portfolio['f-score'].mean():.2f}")
with col2:
st.metric(label="평균 GP/A", value=f"{portfolio['GP/A'].mean():.2f}%")
with col3:
avg_market_cap = portfolio['시가총액'].mean() / 1_000_000_000
st.metric(label="평균 시가총액", value=f"{avg_market_cap:.1f}십억원")
with col4:
st.metric(label="종목 수", value=len(portfolio))
data = get_super_quality_top(db)
st.write("### 포트폴리오")
st.write(data)
# # Display options
# col1, col2 = st.columns([1, 2])
#
# with col1:
# st.write("### 설정")
# min_f_score = st.slider("최소 F-스코어", min_value=0, max_value=3, value=3)
# include_small_caps = st.checkbox("소형주만 포함", value=True)
# num_stocks = st.slider("포트폴리오 종목수", min_value=5, max_value=50, value=20)
#
# # Filter data
# filtered_data = data[data['f-score'] >= min_f_score].copy()
#
# if include_small_caps:
# # Sort by market cap and keep only the bottom 20%
# filtered_data = filtered_data.sort_values('시가총액')
# filtered_data = filtered_data.head(int(len(filtered_data) * 0.2))
#
# # Sort by GP/A in descending order
# filtered_data = filtered_data.sort_values('GP/A', ascending=False)
#
# # Get top N stocks
# portfolio = filtered_data.head(num_stocks)
#
# # Display portfolio
# with col2:
# st.write(f"### 선택된 {len(portfolio)} 종목")
# st.dataframe(portfolio, use_container_width=True)
#
# # Display metrics
# st.write("### 포트폴리오 지표")
# col1, col2, col3, col4 = st.columns(4)
#
# with col1:
# st.metric(label="평균 F-스코어", value=f"{portfolio['f-score'].mean():.2f}")
#
# with col2:
# st.metric(label="평균 GP/A", value=f"{portfolio['GP/A'].mean():.2f}%")
#
# with col3:
# avg_market_cap = portfolio['시가총액'].mean() / 1_000_000_000
# st.metric(label="평균 시가총액", value=f"{avg_market_cap:.1f}십억원")
#
# with col4:
# st.metric(label="종목 수", value=len(portfolio))
def get_last_year_end():
"""Get the last year's end date."""
today = datetime.now()
last_year = today.year - 1
last_year_end = datetime(last_year, 12, 31)
return last_year_end.date()