Compare commits

..

No commits in common. "aa5807690be358e0a767038404cc431f1055943c" and "6da91bb0bde1f4fb796cb358f9a47bea9168d7ff" have entirely different histories.

2 changed files with 0 additions and 229 deletions

View File

@ -1,96 +0,0 @@
# 패키지 불러오기
import os
from urllib.parse import quote_plus
import pymysql
from sqlalchemy import create_engine
import pandas as pd
import numpy as np
from dotenv import load_dotenv
load_dotenv()
user = os.getenv('DB_USER')
pw = os.getenv('DB_PW')
engine_for_pw = quote_plus(pw)
host = os.getenv('DB_HOST')
port = int(os.getenv('DB_PORT'))
db = os.getenv('DB_DB')
# DB 연결
engine = create_engine(f'mysql+pymysql://{user}:{engine_for_pw}@{host}:{port}/{db}')
con = pymysql.connect(user=user,
passwd=pw,
host=host,
port=port,
db=db,
charset='utf8')
mycursor = con.cursor()
# 가치 지표 계산
# 분기 재무제표 불러오기
kor_fs = pd.read_sql("""
select * from kor_fs
where 공시구분 = 'q'
and 계정 in ('당기순이익', '자본', '영업활동으로인한현금흐름', '매출액');
""", con=engine)
# 티커 리스트 불러오기
ticker_list = pd.read_sql("""
select * from kor_ticker
where 기준일 = (select max(기준일) from kor_ticker)
and 종목구분 = '보통주';
""", con=engine)
engine.dispose()
# TTM 구하기
kor_fs = kor_fs.sort_values(['종목코드', '계정', '기준일'])
kor_fs['ttm'] = kor_fs.groupby(['종목코드', '계정'], as_index=False)[''].rolling(
window=4, min_periods=4).sum()['']
# 자본은 평균 구하기
kor_fs['ttm'] = np.where(kor_fs['계정'] == '자본', kor_fs['ttm'] / 4,
kor_fs['ttm'])
kor_fs = kor_fs.groupby(['계정', '종목코드']).tail(1)
kor_fs_merge = kor_fs[['계정', '종목코드',
'ttm']].merge(ticker_list[['종목코드', '시가총액', '기준일']],
on='종목코드')
kor_fs_merge['시가총액'] = kor_fs_merge['시가총액'] / 100000000
kor_fs_merge['value'] = kor_fs_merge['시가총액'] / kor_fs_merge['ttm']
kor_fs_merge['value'] = kor_fs_merge['value'].round(4)
kor_fs_merge['지표'] = np.where(
kor_fs_merge['계정'] == '매출액', 'PSR',
np.where(
kor_fs_merge['계정'] == '영업활동으로인한현금흐름', 'PCR',
np.where(kor_fs_merge['계정'] == '자본', 'PBR',
np.where(kor_fs_merge['계정'] == '당기순이익', 'PER', None))))
kor_fs_merge.rename(columns={'value': ''}, inplace=True)
kor_fs_merge = kor_fs_merge[['종목코드', '기준일', '지표', '']]
kor_fs_merge = kor_fs_merge.replace([np.inf, -np.inf, np.nan], None)
query = """
insert into kor_value (종목코드, 기준일, 지표, )
values (%s,%s,%s,%s) as new
on duplicate key update
=new.
"""
args_fs = kor_fs_merge.values.tolist()
mycursor.executemany(query, args_fs)
con.commit()
ticker_list[''] = ticker_list['주당배당금'] / ticker_list['종가']
ticker_list[''] = ticker_list[''].round(4)
ticker_list['지표'] = 'DY'
dy_list = ticker_list[['종목코드', '기준일', '지표', '']]
dy_list = dy_list.replace([np.inf, -np.inf, np.nan], None)
dy_list = dy_list[dy_list[''] != 0]
args_dy = dy_list.values.tolist()
mycursor.executemany(query, args_dy)
con.commit()
engine.dispose()
con.close()

View File

@ -1,133 +0,0 @@
import os
from urllib.parse import quote_plus
import pymysql
from sqlalchemy import create_engine
import pandas as pd
import requests as rq
from bs4 import BeautifulSoup
import re
from tqdm import tqdm
import time
from dotenv import load_dotenv
load_dotenv()
user = os.getenv('DB_USER')
pw = os.getenv('DB_PW')
engine_for_pw = quote_plus(pw)
host = os.getenv('DB_HOST')
port = int(os.getenv('DB_PORT'))
db = os.getenv('DB_DB')
# DB 연결
engine = create_engine(f'mysql+pymysql://{user}:{engine_for_pw}@{host}:{port}/{db}')
con = pymysql.connect(user=user,
passwd=pw,
host=host,
port=port,
db=db,
charset='utf8')
mycursor = con.cursor()
# 제무재표 크롤링
# 티커리스트 불러오기
ticker_list = pd.read_sql("""
select * from kor_ticker
where 기준일 = (select max(기준일) from kor_ticker)
and 종목구분 = '보통주';
""", con=engine)
# DB 저장 쿼리
query = """
insert into kor_fs (계정, 기준일, , 종목코드, 공시구분)
values (%s,%s,%s,%s,%s) as new
on duplicate key update
=new.
"""
# 오류 발생시 저장할 리스트 생성
error_list = []
# 재무제표 클렌징 함수
def clean_fs(df, ticker, frequency):
df = df[~df.loc[:, ~df.columns.isin(['계정'])].isna().all(axis=1)]
df = df.drop_duplicates(['계정'], keep='first')
df = pd.melt(df, id_vars='계정', var_name='기준일', value_name='')
df = df[~pd.isnull(df[''])]
df['계정'] = df['계정'].replace({'계산에 참여한 계정 펼치기': ''}, regex=True)
df['기준일'] = pd.to_datetime(df['기준일'],
format='%Y-%m') + pd.tseries.offsets.MonthEnd()
df['종목코드'] = ticker
df['공시구분'] = frequency
return df
# for loop
for i in tqdm(range(0, len(ticker_list))):
# 티커 선택
ticker = ticker_list['종목코드'][i]
# 오류 발생 시 이를 무시하고 다음 루프로 진행
try:
# url 생성
url = f'http://comp.fnguide.com/SVO2/ASP/SVD_Finance.asp?pGB=1&gicode=A{ticker}'
# 데이터 받아오기
data = pd.read_html(url, displayed_only=False)
# 연간 데이터
data_fs_y = pd.concat([
data[0].iloc[:, ~data[0].columns.str.contains('전년동기')], data[2],
data[4]
])
data_fs_y = data_fs_y.rename(columns={data_fs_y.columns[0]: "계정"})
# 결산년 찾기
page_data = rq.get(url)
page_data_html = BeautifulSoup(page_data.content, 'html.parser')
fiscal_data = page_data_html.select('div.corp_group1 > h2')
fiscal_data_text = fiscal_data[1].text
fiscal_data_text = re.findall('[0-9]+', fiscal_data_text)
# 결산년에 해당하는 계정만 남기기
data_fs_y = data_fs_y.loc[:, (data_fs_y.columns == '계정') | (
data_fs_y.columns.str[-2:].isin(fiscal_data_text))]
# 클렌징
data_fs_y_clean = clean_fs(data_fs_y, ticker, 'y')
# 분기 데이터
data_fs_q = pd.concat([
data[1].iloc[:, ~data[1].columns.str.contains('전년동기')], data[3],
data[5]
])
data_fs_q = data_fs_q.rename(columns={data_fs_q.columns[0]: "계정"})
data_fs_q_clean = clean_fs(data_fs_q, ticker, 'q')
# 두개 합치기
data_fs_bind = pd.concat([data_fs_y_clean, data_fs_q_clean])
# 재무제표 데이터를 DB에 저장
args = data_fs_bind.values.tolist()
mycursor.executemany(query, args)
con.commit()
except:
# 오류 발생시 해당 종목명을 저장하고 다음 루프로 이동
print(ticker)
error_list.append(ticker)
# 타임슬립 적용
time.sleep(2)
# DB 연결 종료
engine.dispose()
con.close()