60 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pandas as pd
 | |
| import numpy as np
 | |
| import matplotlib.pyplot as plt
 | |
| import seaborn as sns
 | |
| import quantcommon
 | |
| 
 | |
| # 퀄리티(우량주) 포트폴리오. 영업수익성이 높은 주식
 | |
| engine = quantcommon.QuantCommon().create_engine()
 | |
| 
 | |
| ticker_list = pd.read_sql("""
 | |
| select * from kor_ticker
 | |
| where 기준일 = (select max(기준일) from kor_ticker) 
 | |
| and 종목구분 = '보통주';
 | |
| """, con=engine)
 | |
| 
 | |
| fs_list = pd.read_sql("""
 | |
| select * from kor_fs
 | |
| where 계정 in ('당기순이익', '매출총이익', '영업활동으로인한현금흐름', '자산', '자본')
 | |
| and 공시구분 = 'q';
 | |
| """, con=engine)
 | |
| 
 | |
| engine.dispose()
 | |
| 
 | |
| fs_list = fs_list.sort_values(['종목코드', '계정', '기준일'])
 | |
| fs_list['ttm'] = fs_list.groupby(['종목코드', '계정'], as_index=False)['값'].rolling(
 | |
|     window=4, min_periods=4).sum()['값']
 | |
| fs_list_clean = fs_list.copy()
 | |
| fs_list_clean['ttm'] = np.where(fs_list_clean['계정'].isin(['자산', '자본']),
 | |
|                                 fs_list_clean['ttm'] / 4, fs_list_clean['ttm'])
 | |
| fs_list_clean = fs_list_clean.groupby(['종목코드', '계정']).tail(1)
 | |
| 
 | |
| fs_list_pivot = fs_list_clean.pivot(index='종목코드', columns='계정', values='ttm')
 | |
| fs_list_pivot['ROE'] = fs_list_pivot['당기순이익'] / fs_list_pivot['자본']
 | |
| fs_list_pivot['GPA'] = fs_list_pivot['매출총이익'] / fs_list_pivot['자산']
 | |
| fs_list_pivot['CFO'] = fs_list_pivot['영업활동으로인한현금흐름'] / fs_list_pivot['자산']
 | |
| 
 | |
| quality_list = ticker_list[['종목코드', '종목명']].merge(fs_list_pivot,
 | |
|                                                   how='left',
 | |
|                                                   on='종목코드')
 | |
| # print(quality_list.round(4).head())
 | |
| 
 | |
| quality_list_copy = quality_list[['ROE', 'GPA', 'CFO']].copy()
 | |
| quality_rank = quality_list_copy.rank(ascending=False, axis=0)
 | |
| 
 | |
| mask = np.triu(quality_rank.corr())
 | |
| fig, ax = plt.subplots(figsize=(10, 6))
 | |
| sns.heatmap(quality_rank.corr(),
 | |
|             annot=True,
 | |
|             mask=mask,
 | |
|             annot_kws={"size": 16},
 | |
|             vmin=0,
 | |
|             vmax=1,
 | |
|             center=0.5,
 | |
|             cmap='coolwarm',
 | |
|             square=True)
 | |
| ax.invert_yaxis()
 | |
| 
 | |
| quality_sum = quality_rank.sum(axis=1, skipna=False).rank()
 | |
| print(quality_list.loc[quality_sum <= 20,
 | |
|                  ['종목코드', '종목명', 'ROE', 'GPA', 'CFO']].round(4)) |