Compare commits

..

No commits in common. "de238f74881e33b1c808ff2382f6f507e18f146c" and "e6939a57ae583395b65cec613d1b8fc68c58cd9a" have entirely different histories.

2 changed files with 0 additions and 118 deletions

View File

@ -1,8 +1,6 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import numpy as np
import quantcommon
# 모멘텀 포트폴리오. 최근 12개월 수익률이 높은 주식
@ -53,60 +51,4 @@ g.set(ylabel=None)
g.fig.set_figwidth(15)
g.fig.set_figheight(8)
plt.subplots_adjust(wspace=0.5, hspace=0.2)
# plt.show()
# k-ratio(모멘텀의 꾸준함 지표)
ret = price_pivot.pct_change().iloc[1:]
ret_cum = np.log(1 + ret).cumsum()
x = np.array(range(len(ret)))
y = ret_cum.iloc[:, 0].values
reg = sm.OLS(y, x).fit()
reg.summary()
x = np.array(range(len(ret)))
k_ratio = {}
for i in range(0, len(ticker_list)):
ticker = data_bind.loc[i, '종목코드']
try:
y = ret_cum.loc[:, price_pivot.columns == ticker]
reg = sm.OLS(y, x).fit()
res = float(reg.params / reg.bse)
except:
res = np.nan
k_ratio[ticker] = res
k_ratio_bind = pd.DataFrame.from_dict(k_ratio, orient='index').reset_index()
k_ratio_bind.columns = ['종목코드', 'K_ratio']
k_ratio_bind.head()
data_bind = data_bind.merge(k_ratio_bind, how='left', on='종목코드')
k_ratio_rank = data_bind['K_ratio'].rank(axis=0, ascending=False)
print(data_bind[k_ratio_rank <= 20])
k_ratio_momentum = price_list[price_list['종목코드'].isin(data_bind.loc[k_ratio_rank <= 20, '종목코드'])]
plt.rc('font', family='Malgun Gothic')
g = sns.relplot(data=k_ratio_momentum,
x='날짜',
y='종가',
col='종목코드',
col_wrap=5,
kind='line',
facet_kws={
'sharey': False,
'sharex': True
})
g.set(xticklabels=[])
g.set(xlabel=None)
g.set(ylabel=None)
g.fig.set_figwidth(15)
g.fig.set_figheight(8)
plt.subplots_adjust(wspace=0.5, hspace=0.2)
plt.show()

View File

@ -1,60 +0,0 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import quantcommon
# 퀄리티(우량주) 포트폴리오. 영업수익성이 높은 주식
engine = quantcommon.QuantCommon().create_engine()
ticker_list = pd.read_sql("""
select * from kor_ticker
where 기준일 = (select max(기준일) from kor_ticker)
and 종목구분 = '보통주';
""", con=engine)
fs_list = pd.read_sql("""
select * from kor_fs
where 계정 in ('당기순이익', '매출총이익', '영업활동으로인한현금흐름', '자산', '자본')
and 공시구분 = 'q';
""", con=engine)
engine.dispose()
fs_list = fs_list.sort_values(['종목코드', '계정', '기준일'])
fs_list['ttm'] = fs_list.groupby(['종목코드', '계정'], as_index=False)[''].rolling(
window=4, min_periods=4).sum()['']
fs_list_clean = fs_list.copy()
fs_list_clean['ttm'] = np.where(fs_list_clean['계정'].isin(['자산', '자본']),
fs_list_clean['ttm'] / 4, fs_list_clean['ttm'])
fs_list_clean = fs_list_clean.groupby(['종목코드', '계정']).tail(1)
fs_list_pivot = fs_list_clean.pivot(index='종목코드', columns='계정', values='ttm')
fs_list_pivot['ROE'] = fs_list_pivot['당기순이익'] / fs_list_pivot['자본']
fs_list_pivot['GPA'] = fs_list_pivot['매출총이익'] / fs_list_pivot['자산']
fs_list_pivot['CFO'] = fs_list_pivot['영업활동으로인한현금흐름'] / fs_list_pivot['자산']
quality_list = ticker_list[['종목코드', '종목명']].merge(fs_list_pivot,
how='left',
on='종목코드')
# print(quality_list.round(4).head())
quality_list_copy = quality_list[['ROE', 'GPA', 'CFO']].copy()
quality_rank = quality_list_copy.rank(ascending=False, axis=0)
mask = np.triu(quality_rank.corr())
fig, ax = plt.subplots(figsize=(10, 6))
sns.heatmap(quality_rank.corr(),
annot=True,
mask=mask,
annot_kws={"size": 16},
vmin=0,
vmax=1,
center=0.5,
cmap='coolwarm',
square=True)
ax.invert_yaxis()
quality_sum = quality_rank.sum(axis=1, skipna=False).rank()
print(quality_list.loc[quality_sum <= 20,
['종목코드', '종목명', 'ROE', 'GPA', 'CFO']].round(4))